<bdo id="ioi04"></bdo>
  • <dd id="ioi04"></dd>
    <source id="ioi04"><tr id="ioi04"></tr></source>
  • <dd id="ioi04"></dd>
  • 歡迎來到貴陽中宇世紀機電設備有限公司官網!
    網站公告:

    關于我們

    關于我們

    貴陽中宇世紀機電設備有限公司成立于2011年,是一家專業致力于智能供水系統設備研究開發、工程方案設計、安裝、調試服務、設備維護為一體的高新技術企業。  自成立以來公司始終堅持產品質量第一、客戶至上的原則,以良好的信譽得廣泛客戶的信賴。 主要產品:無負壓供水設備,變頻供水設備,空調循環泵,污水泵,消防泵,不銹鋼水箱等。 我們的優勢:立足貴州,主要管理及技術人員有很長的水泵行業從業經驗, 有專業的技術能力,能為客戶提供最經濟合理的技術方案及良好售后服務。 公司本著“卓越、創新、積極進取、工作高效”的企業精神,不斷完善自我,提高自我,積極參與市場競爭,為發...

    查看更多

    買水泵,定制不銹鋼水箱一定要找中宇

    始終致力于市場的開拓和售后服務的完善
    質量第一 客戶至上

    01

    產品質量有保障

    國家B級水泵產品檢測中心

    公司實現網絡化管理,于2001年通過ISO9001國際質量體系認證
    產品開發、研制、設計、制造、檢驗、組裝以及售后服務等環節

    豐富的生產技術經驗和完善的管理模式,采用優質原材料、確保安全性以及供應穩定性

    產品質量有保障
    02

    經驗豐富的團隊

    質量、品牌、信譽是我們永恒的追求

    公司現有員工百余名,其中大專學歷以上的占60%;
    研發與技術團隊人員共52人,全部擁有中、高級工程師職稱

    公司每年都會從合作的名牌大學吸收優秀畢業生加入;
    不斷的為公司注入新鮮血液和積累優秀的人才儲備!

    經驗豐富的團隊
    03

    優越的質量管理體系

    人類與自然的和諧共贏,社會與環保的責任共享

    憑借雄厚的技術實力、完善的管理制度、高度值的技術團隊
    研發了以\"性能優越、運行可靠、誠信服務、持續創新\"為方針

    確保產品品質長期穩定可靠、不斷提高
    為贏得廣大用戶的認可和信任打下了堅實的基礎。

    優越的質量管理體系
    中間大圖
    • 關于安裝底閥易出現的問題及解決方案

      水泵的安裝有自灌式和上吸式,采用上吸式時一般采用底閥,但這種方式有一個很大的缺點,就是底閥容易漏水,導致水泵經常吸不上水,這一方面造成了需要經常灌水的麻煩,另一方面也容易導致水泵的空轉而損壞電機。目前解決這個問題的方法很多采用加真空引水罐的方式,但也只能用于水泵采用機械密封的情況,如果水泵選用的是填料密封,那么采用這種方式也解決不了問題,也會出現吸不上水的問題,這種方式投資也比較大。也有的采用在出水口接一根管到進水口,需要灌水的時候打開管上的閥門進行灌水。但這也需要人主動去灌水,當水泵設為自動時,需要發現上不了水了才去處理。如果發現不及時會造成水泵的長時間空轉而損壞電機。我公司針對這些現實中經常出現的問題,設計出了一個 成本低效果好的解決方案:在出水管和進水管之間安裝一根連通管,中間加一個電磁閥,加控制器和水泵聯動,在水泵啟動前先啟動電磁閥,延時適當的時間再啟動水泵,并關閉電磁閥。這樣就實現了自動灌水的目的,達到無人值守,保護電機的目的。<了解詳情>

    • 各種泵的選型原則、依據和具體操作方式

      設計院在設計裝置設備時,要確定泵的用途和性能并選擇崩型。這種選擇首先得從選擇泵的種類和形式開始,那么以什么原則來選泵呢?依據又是什么?

       

         、了解泵選型原則

         1、使所選泵的型式和性能符合裝置流量、揚程、壓力、溫度、汽蝕流量、吸程等工藝參數的要求。

         2、必須滿足介質特性的要求。

         對輸送易燃、易爆有毒或貴重介質的泵,要求軸封可靠或采用無泄漏泵,如磁力驅動泵、隔膜泵、屏蔽泵

         對輸送腐蝕性介質的泵,要求對流部件采用耐腐蝕性材料,如AFB不銹鋼耐腐蝕泵,CQF工程塑料磁力驅動泵。

         對輸送含固體顆粒介質的泵,要求對流部件采用耐磨材料,必要時軸封用采用清潔液體沖洗。

         3、機械方面可靠性高、噪聲低、振動小。

         4、經濟上要綜合考慮到設備費、運轉費、維修費和管理費的總成本最低。

         5、離心泵具有轉速高、體積小、重量輕、效率高、流量大、結構簡單、輸液無脈動、性能平穩、容易操作和維修方便等特點。

         因此除以下情況外,應盡可能選用離心泵

         a、有計量要求時,選用計量泵

         b、揚程要求很高,流量很小且無合適小流量高揚程離心泵可選用時,可選用往復泵,如汽蝕要求不高時也可選用旋渦泵.

         c、揚程很低,流量很大時,可選用軸流泵和混流泵。

         d、介質粘度較大(大于650~1000mm2/s)時,可考慮選用轉子泵或往復泵(齒輪泵、.螺桿泵

         e、介質含氣量75%,流量較小且粘度小于37.4mm2/s時,可選用旋渦泵。

         f、對啟動頻繁或灌泵不便的場合,應選用具有自吸性能的泵,如自吸式離心泵、自吸式旋渦泵、氣動(電動)隔膜泵。

         二、知道泵選型的基本依據

         泵選型依據,應根據工藝流程,給排水要求,從五個方面加以考慮,既液體輸送量、裝置揚程、液體性質、管路布置以及操作運轉條件等

         1、流量是選泵的重要性能數據之一,它直接關系到整個裝置的的生產能力和輸送能力。如設計院工藝設計中能算出泵正常、最小、最大三種流量。選擇泵時,以最大流量為依據,兼顧正常流量,在沒有最大流量時,通??扇≌A髁康?/span>1.1倍作為最大流量。

         2、裝置系統所需的揚程是選泵的又一重要性能數據,一般要用放大5%—10%余量后揚程來選型。

         3、液體性質,包括液體介質名稱,物理性質,化學性質和其它性質,物理性質有溫度c密度d,粘度u,介質中固體顆粒直徑和氣體的含量等,這涉及到系統的揚程,有效氣蝕余量計算和合適泵的類型:化學性質,主要指液體介質的化學腐蝕性和毒性,是選用泵材料和選用那一種軸封型式的重要依據。

         4、裝置系統的管路布置條件指的是送液高度送液距離送液走向,吸如側最低液面,排出側最高液面等一些數據和管道規格及其長度、材料、管件規格、數量等,以便進行系梳揚程計算和汽蝕余量的校核。

         5、操作條件的內容很多,如液體的操作T飽和蒸汽力P、吸入側壓力PS(絕對)、排出側容器壓力PZ、海拔高度、環境溫度操作是間隙的還是連續的、泵的位置是固定的還是可移的。
         
        三、選泵的具體操作

        根據泵選型原則和選型基本條件,具體操作如下:

         1、根據裝置的布置、地形條件、水位條件、運轉條件,確定選擇臥式、立式和其它型式(管道式、潛水式、液下式、無堵塞式、自吸式、齒輪式等)的泵。

         2、根據液體介質性質,確定清水泵,熱水泵還是油泵、化工泵耐腐蝕泵雜質泵,或者采用無堵塞泵。
      安裝在爆炸區域的泵,應根據爆炸區域等級,采用相應的防爆電動機。

         3、根據流量大小,確定選單吸泵還是雙吸泵;根據揚程高低,選單級泵還是多級泵,高轉速泵還是低轉速泵(空調泵)、多級泵效率比單級泵低,如選單級泵和多級泵同樣都能用時,首先選用單級泵。

         4、確定泵的具體型號
       確定選用什么系列的泵后,就可按最大流量,(在沒有最大流量時,通??扇≌A髁康?/span>1.1倍作為最大流量),取放大5%—10%余量后的揚程這兩個性能的主要參數,在型譜圖或者系列特性曲線上確定具體型號。操作如下:
       利用泵特性曲線,在橫坐標上找到所需流量值,在縱坐標上找到所需揚程值,從兩值分別向上和向右引垂線或水平線,兩線交點正好落在特性曲線上,則該泵就是要選的泵,但是這種理想情況一般很少,通常會碰上下列兩種情況:
        第一種:交點在特性曲線上方,這說明流量滿足要求,但揚程不夠,此時,若揚程相差不多,或相差5%左右,仍可選用,若揚程相差很多,則選揚程較大的泵?;蛟O法減小管路阻力損失。
        第二種:交點在特性曲線下方,在泵特性曲線扇狀梯形范圍內,就初步定下此型號,然后根據揚程相差多少,來決定是否切割葉輪直徑,
          若揚程相差很小,就不切割,若揚程相差很大,就按所需Q、H、,根據其ns和切割公式,切割葉輪直徑,若交點不落在扇狀梯形范圍內,應選揚程較小的泵。選泵時,有時須考慮生產工藝要求,選用不同形狀Q-H特性曲線。

       5、泵型號確定后,對水泵或輸送介質的物理化學介質近似水的泵,需再到有關產品目錄或樣本上,根據該型號性能表或性能曲線進行校改,看正常工作點是否落在該泵優先工作區?有效NPSH是否大于(NPSH)。也可反過來以NPSH校改幾何安裝高度?

      6、對于輸送粘度大于20mm2/s的液體泵(或密度大于1000kg/m3),一定要把以水實驗泵特性曲線換算成該粘度(或者該密度下)的性能曲線,特別要對吸入性能和輸入功率進行認真計算或較核。

      7、確定泵的臺數和備用率:
        對正常運轉的泵,一般只用一臺,因為一臺大泵與并聯工作的兩臺小泵相當,(指揚程、流量相同),大泵效率高于小泵,故從節能角度講寧可選一臺大泵,而不用兩臺小泵,但遇有下列情況時,可考慮兩臺泵并聯合作:
        流量很大,一臺泵達不到此流量。
        對于需要有50%的備用率大型泵,可改兩臺較小的泵工作,兩臺備用(共三臺)
       對某些大型泵,可選用70%流量要求的泵并聯操作,不用備用泵,在一臺泵檢修時,另一臺泵仍然承擔 生產上70%的輸送。
      對需24小時連續不停運轉的泵,應備用三臺泵,一臺運轉,一臺備用,一臺維修。

      8、一般情況下,客戶可提交其選泵的基本條件,由我司給予選型或者推薦更好的泵產品。如果設計院在設計裝置設備時,對泵的型號已經確定,按設計院要求配置。

         9、確定泵的臺數和備用率:

         對正常運轉的泵,一般只用一臺,因為一臺大泵與并聯工作的兩臺小泵相當,(指揚程、流量相同),大泵效率高于小泵,故從節能角度講寧可選一臺大泵,而不用兩臺小泵,但遇有下列情況時,可考慮兩臺泵并聯合作:

         流量很大,一臺泵達不到此流量。

         對于需要有50%的備用率大型泵,可改兩臺較小的泵工作,兩臺備用(共三抬)

         對某些大型泵,可選用70%流量要求的泵并聯操作,不用備用泵,在一臺泵檢修時,另一抬泵仍然承擔生產上70%的輸送。

         對需24小時連續不停運轉的泵,應備用三臺泵,運轉,一臺備用,一臺維修。

      <了解詳情>

    • 水泵揚程估算干貨,接好了?。?!

      揚程、流量和功率是考察水泵性能的重要參數:

      1.流量水泵的流量又稱為輸水量。

       

      它是指水泵在單位時間內輸送水的數量。以符號Q來表示,其單位為升/秒、立方米/秒、立方米/小時。

       

      2.揚程水泵的揚程是指水泵能夠揚水的高度,通常以符號H來表示,其單位為米。

       

      離心泵的揚程以葉輪中心線為基準,分由兩部分組成。從水泵葉輪中心線至水源水面的垂直高度,即水泵能把水吸上來的高度,叫做吸水揚程,簡稱吸程;從水泵葉輪中心線至出水池水面的垂直高度,即水泵能把水壓上去的高度,叫做壓水揚程,簡稱壓程。即水泵揚程=吸水揚程+壓水揚程應當指出,銘牌上標示的揚程是指水泵本身所能產生的揚程,它不含管道水流受摩擦阻力而引起的損失揚程。在選用水泵時,注意不可忽略。否則,將會抽不上水來。


      3.功率在單位時間內,機器所做功的大小叫做功率。

       

      通常用符號N來表示。常用的單位有:公斤·米/秒、千瓦、馬力。通常電動機的功率單位用千瓦表示;柴油機或汽油機的功率單位用馬力表示。動力機傳給水泵軸的功率,稱為軸功率,可以理解為水泵的輸入功率,通常講水泵功率就是指軸功率。 由于軸承和填料的摩擦阻力;葉輪旋轉時與水的摩擦;泵內水流的漩渦、間隙回流、進出、口沖擊等原因。必然消耗了一部分功率,所以水泵不可能將動力機輸入的功率完全變為有效功率,其中定有功率損失,也就是說,水泵的有效功率與泵內損失功率之和為水泵的軸功率。

       

      泵的揚程、流量計算公式:

      泵的揚程H=32是什么意思? 

       

      揚程H=32是說這臺機器最多可以把水提高32米 

       

      流量=橫截面積*流速 流速需要自己測定:秒表

       

      泵的揚程估算:

      水泵的揚程與功率大小沒有關系,與水泵葉輪的直徑大小和葉輪的級數有關,同樣功率的水泵有可能揚程上百米,但流量可能只有幾方,也可能揚程只有幾米,但是流量可能上百方。總的規律是同樣功率下,揚程高的流量少,揚程低的流量大,沒有標準計算公式來確定揚程,與你的使用條件和出廠的水泵型號來確定。 可以按泵出口壓力表來推算即可,如泵出口是1MPa(10kg/cm2)那揚程大約是100米,但是還要考慮吸入壓力的影響。 對離心泵來說,它有三個揚程:實際吸水揚程、實際壓水揚程和實際揚程,在沒指明的情況下,一般認為揚程是指兩水面的高度差。

       

      這里所談的是閉式空調冷水系統的阻力組成,因為這種系統是量常用的系統

       

      例:估算水泵揚程

       

      根據以上所述,可以粗略估計出一幢約100m高的高層建筑空調水系統的壓力損失,也即循環水泵所需的揚程:

       

      1、冷水機組阻力:取80 kPa(8m水柱);

       

      2、管路阻力:取冷凍機房內的除污器、集水器、分水器及管路等的阻力為50 kPa;取輸配側管路長度300m與比摩阻200 Pa/m,則磨擦阻力為300*200=60000 Pa=60 kPa;如考慮輸配側的局部阻力為磨擦阻力的50%,則局部阻力為60 kPa*0.5=30 kPa;系統管路的總阻力為50 kPa+60 kPa+30 kPa=140 kPa(14m水柱);

       

      3、空調末端裝置阻力組合式空調器的阻力一般比風機盤管阻力大,故取前者的阻力為45 kPa(4.5水柱);

       

      4、二通調節閥的阻力:取40 kPa(0.4水柱)。

       

      5、于是,水系統的各部分阻力之和為:80 kPa+140kPa+45 kPa+40 kPa=305 kPa(30.5m水柱)

       

      6、水泵揚程:取10%的安全系數,則揚程H=30.5m*1.1=33.55m。  

       

      根據以上估算結果,可以基本掌握類同規模建筑物的空調水系統的壓力損失值范圍,尤其應防止因未經過計算,過于保守,而將系統壓力損失估計過大,水泵揚程選得過大,導致能量浪費。

      <了解詳情>

    • 如何降低水泵電機損耗?這里有妙招

      電機損耗類型

       

      水泵電動機在將電能轉換為機械能的同時,本身也損耗一部分能量,電動機損耗一般可分為可變損耗、固定損耗和雜散損耗三部分。
       
      1. 可變損耗是隨負荷變化的,包括定子電阻損耗(銅損)、轉子電阻損耗和電刷電阻損耗。
       
      2. 固定損耗與負荷無關,包括鐵芯損耗和機械損耗。鐵損又由磁滯損耗和渦流損耗所組成,與電壓的平方成正比,其中磁滯損耗還與頻率成反比。
       
      3. 其他雜散損耗是機械損耗和其他損耗,包括軸承的摩擦損耗和風扇、轉子等由于旋轉引起的風阻損耗等。
       
      降低電機損耗的措施
      1. 定子損耗
      定子I^2R損耗俗稱定子銅耗,定子銅耗與輸出功率關系很大,輸出功率越大,輸入電流越大,溫度越高,定子銅耗越大。以額定輸入額定負荷為參考,效率較高的電機,定子銅耗在五大損耗中比重最大,一般大于總損耗的30%。
       
      降低電動機定子I^2R損耗的主要方法有:
      (1)增加定子槽截面積,在同樣定子外徑的情況下,增加定子槽截面積會減少磁路面積,增加齒部磁密;
      (2)增加定子槽滿槽率,這對低壓小電動機效果較好,應用最佳繞線和絕緣尺寸、大導線截面積可增加定子的滿槽率;
      (3)盡量縮短定子繞組端部長度,定子繞組端部損耗占繞組總損耗的1/4~1/2,減少繞組端部長度,可提高電動機效率。實驗表明,端部長度減少20%,損耗下降10%。
       
      2. 轉子損耗
      轉子I^2R損耗俗稱轉子銅耗,主要與轉子電流和轉子電阻有關。
       
      電動機轉子I^2R損耗相應的節能方法主要有:
      (1)減小轉子電流,這可從提高電壓和電機功率因素兩方面考慮;
      (2)增加轉子槽截面積;
      (3)減小轉子繞組的電阻,如采用粗的導線和電阻低的材料,這對小電動機較有意義,因為小電動機一般為鑄鋁轉子,若采用鑄銅轉子,電動機總損失可減少10%~15%,但現今的鑄銅轉子所需制造溫度高且技術尚未普及,其成本高于鑄鋁轉子15%~20%。
       
      3. 鐵芯損耗
      交流電機的交變磁場在鐵心中產生的渦流電流損耗,渦流過大,使得電機整體溫升過高,繞組散熱速度降低,導致繞組過熱電機燒壞。
       
      降低電動機鐵耗的方法有:
      (1)減小磁密度,增加鐵芯的長度以降低磁通密度,但電動機用鐵量隨之增加;
      (2)減少鐵芯片的厚度來減少感應電流的損失,如用冷軋硅鋼片代替熱軋硅鋼片可減小硅鋼片的厚度,但薄鐵芯片會增加鐵芯片數目和電機制造成本;
      (3)采用導磁性能良好的冷軋硅鋼片降低磁滯損耗;
      (4)采用高性能鐵芯片絕緣涂層;
      (5)熱處理及制造技術,鐵芯片加工后的剩余應力會嚴重影響電動機的損耗,硅鋼片加工時,裁剪方向、沖剪應力對鐵芯損耗的影響較大。順著硅鋼片的碾軋方向裁剪、并對硅鋼沖片進行熱處理,可降低10%~20%的損耗等方法來實現。
       
      4. 雜散損耗
      電動機在負載運行時的總雜耗由空載雜耗和負載雜耗組成??蛰d雜耗是指,由空載試驗所測定的鐵耗中除了磁通在定子導磁部分產生的基本鐵耗外的各種損耗之和;負載雜耗是指除鐵耗、機械損耗和定轉子銅耗以外, 由電機的負載電流所引起的各種損耗之和。
       
       目前對電動機雜散損耗的認識仍然處于研究階段,降低雜散損失的主要方法有:
      (1)采用熱處理及精加工降低轉子表面短路;
      (2)轉子槽內表面絕緣處理;
      (3)通過改進定子繞組設計減少諧波;
      (4)改進轉子槽配合設計和配合減少諧波,增加定、轉子齒槽、把轉子槽形設計成斜槽、采用串接的正弦繞組、散布繞組和短距繞組可大大降低高次諧波;采用磁性槽泥或磁性槽楔替代傳統的絕緣槽楔、用磁性槽泥填平電動機定子鐵芯槽口,是減少附加雜散損耗的有效方法。
       
      5. 風摩損耗
      電機轉動過程中,轉子外表面、散熱風扇均與空氣產生摩擦,空氣會對轉動部位產生阻力,克服這些阻力所耗用的功就叫風損摩耗。
       
      風摩損耗占電機總損失的25%左右,應引起重視。摩擦損失主要有軸承和密封引起,可采取以下措施降低:
      (1)盡量減小軸的尺寸,但需滿足輸出扭矩和轉子動力學的要求;
      (2)使用高效軸承;
      (3)使用高效潤滑系統及潤滑劑;
      (4)采用先進的密封技術。
      <了解詳情>

    • 水錘是個什么東西?有多危險?怎么預防?

      水錘又稱水擊。是指水或其他液體輸送過程中,由于閥門突然開關、水泵驟然啟停等原因,流速突然變化且壓強大幅波動的現象。說的通俗些:突然停電或閥門關閉太快,由于壓力水流的慣性,產生水流沖擊波,就象錘子敲打一樣,我們稱之為水錘。
       
      水錘效應有多可怕,3D動畫告訴你:

      供水管道壁光滑,后續水流在慣性的“幫兇”下,水力迅速達到最大,所以容易造成破壞作用(如破壞閥門和水泵等),這就是水力學中的“水錘效應”,也叫正水錘;相反,閥門或水泵突然開啟,也會產生水錘效應,叫負水錘。這種大幅波動的壓力沖擊波,極易導致管道因局部超壓而破裂、損壞設備等。所以水錘效應防護是供水管道工程設計施工中必須要考慮的關鍵因素。
       
      水錘有多危險?

       
      水錘產生的條件
       
      1、閥門突然開啟或關閉;
       
      2、水泵機組突然停車或開啟;
       
      3、單管向高處輸水(供水地形高差超過20米);
       
      4、水泵總揚程(或工作壓力)大;
       
      5、輸水管道中水流速度過大;
       
      6、輸水管道過長,且地形變化大。
       
      7、不規范的施工是給水管道工程存在的隱患
      7.1如三通、彎頭、異徑管等節點的水泥止推墩制作不符合要求。

       

      蒸汽系統水錘現象:

       
      水錘效應的危害
       
      水錘引起的壓強升高,可達管道正常工作壓強的幾倍,甚至幾十倍。這種大幅度的壓強波動,對管路系統造成的危害主要有:
       
       
      1、引起管道強烈振動,管道接頭斷開;
       
      2、破壞閥門,嚴重的壓強過高造成管道爆管,供水管網壓力降低;
       
      3、反之,壓強過低又會導致管子的癟塌,還會損壞閥門和固定件;
       
      4、引起水泵反轉,破壞泵房內設備或管道,嚴重的造成泵房淹沒,造成人身傷亡等重大事故,影響生產和生活。
       
      消除或減輕水錘的防護措施
       
      對于水錘的防護措施很多,但需根據水錘可能產生的原因,采取不同的措施。
       
      降低輸水管線的流速,可在一定程度上降低水錘壓力,但會增大輸水管管徑,增加工程投資。輸水管線布置時應考慮盡量避免出現駝峰或坡度劇變。
       
      減少輸水管道長度,管線愈長,停泵水錘值愈大。由一個泵站變兩個泵站,用吸水井把兩個泵站銜接起來。 
       
      停泵水錘的大小主要與泵房的幾何揚程有關,幾何揚程愈高,停泵水錘值也愈大。因此,應根據當地實際情況選用合理的水泵揚程。 
       
      事故停泵后,應待止回閥后管道充滿水再啟動水泵。 
       
      啟泵時水泵出口閥門不要全開,否則會產生很大的水沖擊。很多泵站的重大水錘事故多在這種情況下產生。
       
      停泵水錘
       
      所謂停泵水錘是指突然斷電或其他原因造成開閥停車時,在水泵和壓力管道中由于流速的突然變化而引起壓力升降的水力沖擊現象。例如電力系統或電器設備發生故障、水泵機組偶發故障等原因,都可能發生離心泵開閥停車,從而引發停泵水錘。
       
      停泵水錘的最高壓力可達正常工作壓力的200%,甚至更高可以使管道及設備擊毀,一般事故造成“跑水”、停水;嚴重事故造成泵房被淹、設備損壞、設施被毀,甚至于造成人身傷亡事故。
       
      設置水錘消除裝置
       
      (1)采用恒壓控制技術
      采用PLC自動控制系統,對機泵進行變頻調速控制,對整個供水泵房系統操作實行自動控制。由于供水管網壓力隨著工況的變化而不斷變化,系統運行過程中經常出現低壓或超壓現象,容易產生水錘,導致對管道和設備的破壞,采用PLC自動控制系統,通過對管網壓力的檢測,反饋控制水泵的開、停和轉速調節,控制流量,進而使壓力維持一定水平,可以通過控制微機設定機泵供水壓力,保持恒壓供水,避免了過大的壓力波動,使產生水錘的概率減小。
       
       
      (2)安裝水錘消除器
      該設備主要防止停泵水錘,一般安裝在水泵出口管道附近,利用管道本身的壓力為動力來實現低壓自動動作,即當管道中的壓力低于設定保護值時,排水口會自動打開放水泄壓,以平衡局部管道的壓力,防止水錘對設備和管道的沖擊,消除器一般可分為機械式和液壓式兩種,機械式消除器動作后由人工恢復,液壓式消除器可自動復位。
       
       
      (3)在大口徑的水泵出水管上安裝緩閉止回閥
      可有效的消除停泵水錘,但因閥門動作時有一定的水量倒流,吸水井須有溢流管。緩閉止回閥有重錘式和蓄能式兩種。這種閥門可以根據需要在一定范圍內對閥門關閉時間進行調整。一般在停電后3~7 s內閥門關閉70%~80%,剩余20%~30%的關閉時間則根據水泵和管路的情況調節,一般在10~30 s范圍。值得注意的是,當管路中存在駝峰而發生彌合水錘時,緩閉止回閥的作用就十分有限。
       
      (4)設置單向調壓塔
      在泵站附近或管道的適當位置修建,單向調壓塔的高度低于該處的管道壓力。當管道內壓力低于塔內水位時,調壓塔向管道補水,防止水柱拉斷,避免彌合水錘。但其對停泵水錘以外的水錘如關閥水錘的降壓作用有限。此外單向調壓塔采用的單向閥的性能要絕對可靠,一旦該閥門失靈,可能導致發生較大的水錘。
       
      (5)在泵站內設置旁通管(閥) 
      在泵系統正常運行時,由于水泵壓水側水壓高于吸水側的水壓,止回閥關閉。當事故斷電突然停泵后,水泵站出口處壓力急劇降低,而吸水側壓力則猛升。在此差壓下,吸水總管中的瞬態高壓水即推開止回閥閥板流向壓水總管的瞬態低壓水,并使該處低水壓有所升高;(傳遞價值,分享經驗,讓每個人平等地提升自我,做化工設備管理行業粉絲最喜愛的媒體,歡迎關注公眾號:化工設備管理與培訓)另一方面,使水泵吸水側的水錘升壓也得到降低。這樣一來,水泵站兩側的水錘升、降壓都得到控制,從而有效地減少和防止了水錘危害。 
       
      (6)設置多級止回閥 
      在較長的輸水管路中,增設一個或多個止回閥,把輸水管劃分成幾段,每段上均設止回閥。當水錘過程中輸水管中水倒流時,各止回閥相繼關閉把回沖水流分成數段,由于每段輸水管(或回沖水流段)內靜水壓頭相當小,從而降低了水錘升壓。此項防護措施,可有效的用于幾何供水高差很大的情況;但不能消除水柱分離的可能性。其最大的缺點是:正常運行時水泵電耗增大、供水成本提高。
       
      <了解詳情>

    • 泵的振動問題分析 (1)

      當泵及其關聯系統發生故障時,通常歸結到四種類型:斷裂,疲勞,摩擦磨損或泄漏。斷裂的原因是過載,例如超過預期的壓力,或管口負荷超出推薦的水平。疲勞的條件是施加的載荷是交變的,應力周期地超過材料破裂的耐久極限,泵部件的疲勞主要由振動過大引起,而振動大由轉子不平衡,泵和驅動機之間軸中心線的過大不對中,或固有頻率共振放大的過大運動引起。
       
      摩擦磨損和密封泄漏意味著轉子和定子之間的相互定位沒有在設計的容差范圍。這可以動態發生,一般原因是過大的振動。當磨損或泄漏位于殼體單個角度位置,常見的原因是不可接受的管口載荷量,及其導致的或獨立的泵/驅動機不對中。在高能泵(特別是加氫裂化和鍋爐給水泵),另一個在定子一個位置摩擦的可能性是溫度變化太快,導致每個部件由于隨溫度的變化,長度和裝配不匹配。
       
      有一些特定的方法和程序可供遵循,降低發生這些問題的機會;或如果發生了,幫助確定解決這些問題的方法。
       
      振動評估
       
      關于泵的振動和其它不穩定機械狀態的診斷或預測,應包括如下評估:

       

      • 轉子動力學行為,包括臨界轉速,激勵響應,和穩定性
      • 扭轉臨界轉速和振蕩應力,包括起機/停機瞬態
      • 管路和管口負荷引起的不穩定應力,和不對中導致的扭曲
      • 由于扭振、止推和徑向負荷導致高應力部件的疲勞
      • 軸承和密封的穩態和動態行為
      • 正常運行和連鎖停機過程的潤滑系統運行
      • 工作范圍對振動的影響
      • 組合的泵和系統中的聲學共振(類似喇叭)
       
      通常討論的振動問題是軸的橫向振動,即與軸垂直的轉子動力學運動,然而,振動問題也會在泵的定子結構發生,如立式泵,另外振動也會發生在軸向,也可能涉及扭振。
       
      泵的運行點對振動的影響
      盡量運行在BEF點,否則,離心泵隨節流振動變大,除非節流伴隨轉速的改變如VFD。在給定轉速運行遠低于BEF,與遠高于BEF一樣,使流體的速度角度與各級葉輪或擴散器或蝸殼舌部的流道角度不匹配。在低于入口或出口回流的流量下,轉子葉輪穩定的側負荷和搖動可能引起摩擦,甚至損壞軸承。一些工廠考慮未來生產擴容,購買大于需求能力的設備,但是這樣會產生幾年的本應可靠設備的性能不可靠。如圖1的典型結果,盡管運行在低于BEF是允許的甚至對某些應用是必須的,但是絕不要使泵長時間運行在低于廠家提供的“最小連續流量”,否則脈動和振動將有階躍升高。

       

       

      泵入口設計對振動的影響
      入口法蘭的機械連接,以及泵葉輪上游的液壓設計,都會顯著影響泵的振動。避免在大的管口有無限制的膨脹節(管路“柔性節”),然而,主要的液壓問題是要有足夠的靜壓避免氣蝕。這意味著不僅僅具有足夠的凈正入口壓頭(NPSHA),還要高一些以滿足廠家公布的3%壓頭下降NPSHR(需要的NPHS)。當NPSHA到3xNPHSR時,高頻氣蝕(有時聽不見的)將引起葉輪流道入口側或摩擦環出口側的侵蝕,并導致低頻有時流道通過頻率振動增加。除了入口壓力太低,如果泵運行在遠離BEF點,進入的流體對旋轉的葉輪流道的沖擊角度會與泵的設計者在該轉速下預測的不同,將在入口或出口發生流道失速,分別導致入口或出口回流。這種內部回流可引起流道壓力側的氣蝕,導致旋渦狀流隨葉輪旋轉,但是以一個較慢的轉速,在意想不到的次同步頻率激勵轉子臨界轉速,顯著增大振動。

       

      平衡
      不平衡是機器振動過大最常見的原因(大約50%),緊隨其后的是不對中。一般認為平衡分靜態(質量中心偏離中心,質量分布主軸仍與旋轉中心線平行)和動態(質量中心軸與旋轉軸成角度)。對應軸向短的部件(如一個止推墊圈)二者的差別可以忽略,只需要單面靜態平衡。對于長度大于1/6直徑的部件,應考慮動態不平衡,至少需要雙面平衡。對于運行在二階臨界轉速(對泵不常見)的轉子,甚至雙面平衡還不夠,可能需要某些形式的高速模態平衡(即平衡去重考慮最接近的固有頻率模態形狀)。不平衡表現為1X頻率,這是因為轉子的重點以轉速旋轉,使振動運動以相同頻率。一般它也導致一個圓形軸心軌跡,盡管如果轉子在滑動軸承內承受高負荷軌跡可能為橢圓。
       
      泵/驅動機對中
      不對中僅次于不平衡,是旋轉機器振動問題第二個最常見的原因。通常區分為兩種形式:平行不對中和角不對中,一般不對中是兩種的結合。有時一個轉子必須在冷態和未運行時偏移,以便在運行和熱態時保持對中。不對中主要引起2X轉頻振動,因為高度橢圓的軌跡驅使軸運行在不對中的一側。有時不對中負荷可導致高次諧頻(即轉子轉速整數倍頻,尤其3X),甚至可能降低振動,因為它加載轉子使其對軸承殼異常變強。或者,不對中可實際上引起1X振動增大,通過抬起轉子使其離開重力加載的“軸承位置”,使軸承運行在相對卸載狀態(這也可導致軸不穩定,后述)。典型的不對中特征表現為2X振動,香蕉或數字8形軌跡,通常伴隨相對較大的軸向運動,也是在2X,因為聯軸器經歷非線性“壓彎”每轉兩次。
       
      共振
      振動超標是常見的問題,尤其在變頻系統,很可能存在一個激勵頻率等于一個固有頻率。為了避免共振,轉子和軸承座的固有頻率應該與“運球”型的力頻率很好分離,它們很可能是1X轉頻(典型不平衡),2X(典型不對中),或葉輪流道數乘以轉速(稱為“流道通過”振動,當葉輪流道通過一個蝸殼舌或擴散器流道“切流”)
       
      實際上,共振放大(常稱為“Q”值)系數通常介于2至25之間,如果引起振動的力是穩定的而不是振蕩的。Q取決于能量消耗的量,稱為“阻尼”,它在碰撞中發生。在一個汽車車身,這個阻尼由沖擊吸收器提供;在一個泵,它大部分由軸承和“環形密封”轉子和定子之間的流體陷阱提供,像平衡活塞。
       
      對應共振,模態沖擊測試是非常有效和被證明的方法,可快速發現共振的原因并從根本解決它。典型的解決方法包括對最大振動運動區域選擇性的支撐,或者增加質量。模態“敲擊“測試最好在機器運行中進行,這樣,軸承和密封是“承載的”并支撐轉子,在泵的典型運行狀態。確認你或服務商具有在機器運行條件下進行“敲擊”測試的能力。
      <了解詳情>

    • 泵的振動問題分析 (2)

      轉子動力學評估
       
      轉子動力學需要一個比結構動力學更專業計算機程序,因為它必須包括的影響如:
      1. 在軸承,葉輪和密封,作為轉速和負荷的函數的三維剛度和阻尼
      2. 葉輪和止推平衡裝置流體激勵力,和
      3. 陀螺效應
       
      然而,一些大學和商業組織開發了轉子動力學程序,可用的程序包括各種計算子程序,用于軸承和圓形密封(如摩擦環和平衡鼓)的剛度和阻尼系數計算,臨界轉速計算,激勵響應和轉子穩定性計算,它包括軸承和密封阻尼和“交叉耦合剛度”的影響(即與運動垂直的的反作用力)。
       
      流體“增加質量”對轉子動力學固有頻率的影響
       
      圍繞轉子的流體以三種方式增加轉子的慣性:流體被困在葉輪通道直接增加質量;由于葉輪和軸材料的存在移動的流體直接對轉子系統增加質量,由于轉子在流體中的振動,它必須移動這個質量;以及在緊密間隙中的流體,一定比轉子振動加速度更快地加速以保持連續性,并因此可能會增加很多倍于其移動的質量(稱為Stroke Effect)。
       
      環形密封“Lomakin效應”對轉子動力學固有頻率的影響
       
      泵的環形密封(例如,摩擦環和平衡鼓)可對動力學特性影響很大,通過改變轉子支撐剛度從而轉子固有頻率,因此可以避開或導致強一倍和二倍轉頻激勵與一個低固有頻率之間可能的共振。環形密封的剛度和阻尼小部分由擠壓油膜和流體動力楔(對滑動軸承設計廣為所知)提供。然而,由于在環形密封中相對軸承來說存在高的軸向對圓周流速比例,由于圓周間隙變化可以在環形間隙產生很大的力,隨著轉子偏心的發展引起Bernoulli壓降,這被稱為Lomakin效應,并且是泵的環形密封中最大的剛度和阻尼力產生機制。
       
      Lomakin效應直接取決于通過密封的壓降,對于恒定系統流阻它產生Lomakin支撐剛度大約隨著轉速的平方而變化。然而,對于大約恒定的系統壓頭,導致只有很小的Lomakin效應隨轉速的變化。其它重要的參數是環形密封長度,直徑和間隙;流體特性是次要的除非涉及非常高的粘度。然而,流體漩渦可以導致Lomakin效應的顯著下降,或者增加伴隨它的交叉耦合,重要的是,當交叉耦合反作用力超過阻尼反作用力,它可能引起轉子動力學不穩定(如合理設置的轉子動力學程序所估算的那樣)。
       
      間隙效應是最強的幾何尺寸影響,Lomakin效應大約與其平方成反比。間隙影響很大的物理解釋是,它給圓周壓力分布(Lomakin效應的原因)通過圓周流動而消除。任何環形密封腔帶有切槽在一定程度具有與增加間隙相同的效果,在這個角度看深槽比淺槽更差。
       
      轉子扭轉分析
       
      橫向轉子動力學分析可以通常不包括其它泵系統部件,如驅動機,泵殼體,軸承座,基礎或管道,然而,泵軸的扭轉振動和各種泵固定結構的振動是取決于系統的,由于振動的固有頻率和振型隨部件的質量,剛度和阻尼而變化的,不是包含在泵中的那些。
       
      盡管扭振問題再泵不常見,除非由高頻VDF激勵的電動機驅動,或由往復發動機驅動,復雜的泵/驅動鏈具有扭振問題的可能性。這可以通過計算進行檢查,包括前幾階扭振臨界轉速,和系統在起機瞬態,穩態運行,連鎖和電動機控制的瞬態過程中對激勵的強迫振動響應。強迫響應應該按照靜態的加上振蕩的應力之和,在驅動鏈的最高應力元件,通常是最小軸直徑處。
       
      一般計算前兩個扭振模型足夠覆蓋期望的激勵頻率范圍,為此,泵機組必須按照至少三個部分建模:泵轉子,聯軸器(包括任何墊塊)和驅動機轉子。如果使用柔性聯軸器(如盤聯軸器),聯軸器的剛度將與軸的剛度在一個數量級,必須包含在分析中。聯軸器扭轉剛度的良好估計,通常相對獨立與速度和穩態扭矩,列在聯軸器樣本數據中,通常提供給定尺寸的剛度范圍。
       
      如果包含齒輪箱,每個齒輪必須單獨考慮,按照慣量和嚙合比。如果泵或驅動轉子與將轉子連接到聯軸器的軸相比不是至少幾倍的扭轉剛度,那么單個軸長度和內部葉輪應包括在模型中,然而對工業泵來說要求最后一步是不常見的。
       
      手工計算前幾個扭轉固有頻率的方法由Blevins給出,然而泵的扭振計算應該包括系統阻尼的影響。為了以足夠精度確定軸的應力,應該使用數字的程序,如Holzer方法,傳遞矩陣法或有限元分析(FEA)。
       
      最低扭轉振型是在泵/驅動系統最常被激起的,這個扭轉振型的大部分運動發生在泵的軸上。這種情況下,主要的阻尼來自泵葉輪,當它由于扭振運動運行在稍高和稍低的瞬時轉速時消耗的能量。這個阻尼的粗略估計公式:
       
      阻尼 = 2x(額定扭矩)x(估計的頻率)/(額定轉速)^2
       
      為了確定期望的大扭振激勵的頻率,以及這些頻率下發生扭矩值,任何給定轉速和流量下的泵的扭矩可以乘以一個單位系數“p.u.”,重要頻率下的p.u.系數可從特定系統的電機和控制生產商那里獲得,一般是感興趣的狀態下穩定運行扭矩的大約0.01至0.05,峰-峰值。來自電動機的最重要的扭轉激勵頻率是極數乘以滑差頻率(對感應電動機),轉速乘以極數,以及轉速本身;泵的不穩定的流體扭矩也存在,頻率表現為轉速乘以葉輪流道數,強度等于傳遞的扭矩除以流道數,一般具有的最大值也是在0.01至0.05區間,不在BEP最佳運行點運行和/或葉輪少于4個流道一般具有較高的值。
       
      對于包括變速或VFD的系統,應該特別關注,除了激勵頻率掃描一個大的范圍從而增加發生共振的機會,老式的VFD控制器提供新的激勵,表現在電動機轉速的各種“控制脈沖”乘數,通常為6X或12X,以及也常為整分數約數。控制器生產廠商可以預測這些頻率及其相關的p.u.系數。
       
      對機組扭轉特性的可接受度的判斷應該基于在所有運行狀態,受迫響應軸應力是否在疲勞極限預留了足夠安全系數之下。對一個仔細分析的轉子系統,推薦的最小安全系數是2。
       
      轉子動力穩定性
       
      轉子動力穩定性指一種現象,即使主動的穩定的激勵非常低,具有反應支持力的轉子及其系統能夠成為自激的,導致可能災害性的振動水平。轉子動力不穩定性的一個關鍵因素是交叉耦合剛度,交叉剛度源于在軸承和其它緊密的旋轉間隙中建立的流體動力油膜,流體動力油膜具有傾向于將轉子推回到其中心位置的有利效果 – 這是典型的流體膜(軸頸)軸承的工作原理。然而,除此之外,交叉耦合力矢量作用在與運動垂直的方向,與源自流體阻尼的矢量方向相反,因此很多人將交叉耦合剛度理解為負阻尼。交叉耦合作用對穩定性是非常重要的,如果交叉耦合力矢量變成大于阻尼矢量,振動引起反應力以一種反饋的方式導致不斷增加的振動,軸心軌跡不斷變大直到產生嚴重摩擦,或由于大的運動反饋停止。
       
      軸半速渦動是一個在低于一階非臨界阻尼的軸彎曲固有頻率下的受迫響應,它是由流體激勵力驅動的,產生力的靜態壓力場以低于轉速的某個速度旋轉,流體旋轉的速度成為渦動速度。渦動最常見的原因是圍繞葉輪前或后側板,或在軸頸軸承的間隙的流體旋轉,這種流體旋轉一般是轉速的約45%,因為流體在定子殼壁是固定的,在轉子表面以轉子的速度旋轉,這樣在旋轉間隙建立起大約半速的“庫艾特流”分布。驅動這個渦動的壓力分布一般是傾斜的,這樣交叉耦合的分量與渦動運動方向相同,并且可能很強。如果某種原因間隙在一側減小,例如由于偏心,結果耦合的力進一步增加。如果流體渦動頻率隨轉速增加而增加,直到渦動位于一個轉子很小阻尼的臨界轉速,交叉耦合力的作用相位相對于對它的反應力成為不穩定的(力導致變形導致更大的力),那么“軸渦動”變為所謂的“軸振蕩”,它是很具破壞性的,迅速地磨損掉泵腔內密封所需要的緊密設計間隙。
       
      軸振蕩的特征是一旦它開始,所有自激發生在軸的彎曲固有頻率,這樣振動響應頻率“鎖定”固有頻率。由于振蕩開始于當渦動接近轉速的一半,并等于軸的固有頻率,正常的1X轉速頻率頻譜和大概圓形的軸心軌跡現在表現出顯著的大約0.45倍轉速分量,在軌跡上表現為一個環,反映每隔一轉一次軌跡脈動。這種情況下的典型觀察是振動“鎖定”在固有頻率上,導致在振蕩開始之后轉速升高,振動偏離渦動的恒定百分比轉速。
       
      參數共振和分數頻率
       
      已經發現,在透平機器中當轉子與殼體的定子部件相互作用時,常見一些類型的非線性振動響應,它們一般歸結到參數共振類型,超出了本文討論的范圍。它們可導致大的振動,盡管相對低的驅動力。一般來講,這些共振是由軸承支撐松動或在軸承、密封或其它旋轉間隙處的摩擦引起的,征狀是脈動的軸心軌跡,在轉速的整分數倍頻,如1/2,1/4等振動較大。
      <了解詳情>

    貴陽中宇世紀機電設備有限公司 版權所有
    聯系人:章經理
    手機:13985540436

    地址:貴州省貴陽市

    不銹鋼水箱十五個基本技術要求
    国产女人高潮叫床视频在线观看,一本大道在线观看无码一区,暴力强奷女交警bd,87福利电影 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>